PM2.5 and ozone health impacts and disparities in New York City: sensitivity to spatial and temporal resolution
نویسندگان
چکیده
Air quality health impact assessment (HIA) synthesizes information about air pollution exposures, health effects, and population vulnerability for regulatory decision-making and public engagement. HIAs often use annual average county or regional data to estimate health outcome incidence rates that vary substantially by season and at the subcounty level. Using New York City as an example, we assessed the sensitivity of estimated citywide morbidity and mortality attributable to ambient fine particulate matter (PM2.5) and ozone to the geographic (county vs. neighborhood) and temporal (seasonal vs. annual average) resolution of health incidence data. We also used the neighborhood-level analysis to assess variation in estimated air pollution impacts by neighborhood poverty concentration. Estimated citywide health impacts attributable to PM2.5 and ozone were relatively insensitive to the geographic resolution of health incidence data. However, the neighborhood-level analysis demonstrated increasing impacts with greater neighborhood poverty levels, particularly for PM2.5-attributable asthma emergency department visits, which were 4.5 times greater in high compared to low-poverty neighborhoods. PM2.5-attributable health impacts were similar using seasonal and annual average incidence rates. Citywide ozone-attributable asthma morbidity was estimated to be 15 % lower when calculated from seasonal, compared to annual average incidence rates, as asthma morbidity rates are lower during the summer ozone season than the annual average rate. Within the ozone season, 57 % of estimated ozone-attributable emergency department for asthma in children occurred in the April-June period when average baseline incidence rates are higher than in the July-September period when ozone concentrations are higher. These analyses underscore the importance of utilizing spatially and temporally resolved data in local air quality impact assessments to characterize the overall city burden and identify areas of high vulnerability.
منابع مشابه
Spatiotemporal trend of ambient air particulate matter with aerodynamic diameter less than 2.5 and 10 μm and ozone in Tabriz city, Iran, during 2006–2017
Background and Objective: This study was conducted to investigate the long-term temporal trends and spatial variations of ambient PM10, PM2.5, O3, concentrations in Tabriz city during the years 2006-2017. Materials and Methods: Real-time hourly concentrations of PM10, PM2.5, O3 measured at nine air quality monitoring stations (AQMSs) were obtained from the Tabriz Department of Environment (TDo...
متن کاملThe contribution of motor vehicle emissions to ambient fine particulate matter public health impacts in New York City: a health burden assessment
BACKGROUND On-road vehicles are an important source of fine particulate matter (PM2.5) in cities, but spatially varying traffic emissions and vulnerable populations make it difficult to assess impacts to inform policy and the public. METHODS We estimated PM2.5-attributable mortality and morbidity from on-road vehicle generated air pollution in the New York City (NYC) region using high-spatial...
متن کاملModeling and Spatio-Temporal Analysis of the Distribution of O3 in Tehran City Based on Neural Network and Spatial Analysis in GIS Environment
Air pollution is one of the most problems that people are facing today in metropolitan areas. Suspended particulates, carbon monoxide, sulfur dioxide, ozone and nitrogen dioxide are the five major pollutants of air that pose many problems to human health. The goal of this study is to propose a spatial approach for estimation and analyzing the spatial and temporal distribution of ozone based on ...
متن کاملDetermination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City
Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...
متن کاملDaily Simulation of Ozone and Fine Particulates over New York State: Findings and Challenges
This study investigates the potential utility of the application of a photochemical modeling system in providing simultaneous forecasts of ozone (O3) and fine particulate matter (PM2.5) over New York State. To this end, daily simulations from the Community Multiscale Air Quality (CMAQ) model for three extended time periods during 2004 and 2005 have been performed, and predictions were compared ...
متن کامل